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Abstract— We discussing below squre root, cube root, log transformation, Tu-
keys lader of power transformation, ANOVA  with Tukey transformation and box-
Cox transformation. Applications of above said transformation’s merits and deme-
rits also pointed out in detailed manner. 
 
Index Terms— Turkeys lader,ANOVA,Box-cox transformation, 

1 INTRODUCTION   
Transforming data is one step in addressing data that do not fit model 
assumptions, and is also used to coerce different variables to have 
similar distributions.  
Transforming data  One approach when remaining fail to meet 
these conditions is to transform one or more variables to better fol-
low a normal distribution.  Often, just the concern variable in a mod-
el will need to be transformed.  However, in complex models and 
multiple regressions, it is sometimes helpful to transform both de-
pendent and independent variables that away from this                                                         
variable greatly from a normal distribution. 

  
There is nothing invalid in transforming variables, but you must be 
careful about how the results from analyses with transformed va-
riables are reported.  For example, we assemble the data for our con-
venience and again disassembled to this for previous stage. 
1.1.Example of transforming skewed data 

  
This example uses hypothetical data of river water turbidity.  Turbid-
ity is a measure of how cloudy water is due to suspended material in 
the water.  Water quality parameters such as this are  

 
 

 
often naturally log-normally distributed:  values are of-
ten low, but are occasionally high or very high.The first 
plot is a histogram of the Turbidity values, with a normal 
curve defined.  Looking at the gray bars, this data is 
skewed strongly to the right (positive skew), and looks 
more or less log-normal.  The gray bars deviate noticeably from the 
red normal curve. 
The second plot is a normal quintile plot (normal Q–Q plot).  If the 
data were normally distributed, the points would follow the red line 
fairly closely.  

  
                 Turbidity = c(1.0, 1.2, 1.1, 1.1, 2.4, 2.2, 2.6, 4.1, 
5.0, 10.0, 4.0, 4.1, 4.2, 4.1, 5.1, 4.5, 5.0, 15.2, 10.0, 20.0, 1.1, 
1.1, 1.2, 1.6, 2.2, 3.0, 4.0, 10.5) 

library(rcompanion) 
 
plotNormalHistogram(Turbidity) 

Diagram: 

 

 

qqnorm(Turbidity, 
       ylab="Sample Quantiles for Turbidity") 
 
qqline(Turbidity,  
       col="red") 
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Diagram: 

 
 

Square root transformation 
Since the data is right-skewed, we will apply common transforma-
tions for right-skewed data:  square root, cube root, and log.  The 
square root transformation improves the distribution of the data 
somewhat. 

 
T_sqrt = sqrt(Turbidity) 
 
 
library(rcompanion) 
 
plotNormalHistogram(T_sqrt) 

Diagram: 

 

 

 
 

 
 
                                  
 
2. TYPES OF TRANSFORMATION 

 
 2.1 CUBE ROOT TRANSFORMATION 

The cube root transformation is stronger than the square root trans-

formation. 
  

T_cub = sign(Turbidity) * abs(Turbidity)^(1/3)   # Avoid 
complex numbers  
                                                 #   for some cube roots 
 
library(rcompanion) 
 
plotNormalHistogram(T_cub) 

Diagram: 

 

 
           

2.2 LOG TRANSFORMATION 
The log transformation is a relatively strong transformation.  Be-
cause certain measurements in nature are naturally log-normal, it is 
often a successful transformation for certain data sets.  While the 
transformed data here does not follow a normal distribution very 
well, it is probably about as close as we can get with these particular 
data. 

 
T_log = log(Turbidity) 
 
 
library(rcompanion) 
 
plotNormalHistogram(T_log) 

Diagram: 
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2.3 TUKEY’S LADDER OF POWERS TRANSFORMATION 
  
The approach of Tukey’s Ladder of Powers uses a power transforma-
tion on a data set.  For example, raising data to a 0.5 power is 
equivalent to applying a square root transformation; raising data to a 
0.33 power is equivalent to applying a cube root transformation. 
  
Here, we use the transformTukey function, which performs iterative 
Shapiro–Wilk tests, and finds the lambdavalue that maximizes the W 
statistic from those tests.  In essence, this finds the power transfor-
mation that makes the data fit the normal distribution as closely as 
possible with this type of transformation. 
  
Left skewed values should be adjusted with (constant – value), to 
convert the skew to right skewed, and perhaps making all values 
positive.  In some cases of right skewed data, it may be beneficial to 
add a constant to make all data values positive before transforma-
tion.  For large values, it may be helpful to scale values to a more 
reasonable range. 
  
In this example, the resultant lambda of –0.1 is slightly stronger than 
a log transformation, since a log transformation corresponds to 
a lambda of 0. 

 
library(rcompanion) 
 
T_tuk =  
     transformTukey(Turbidity, 
                     plotit=FALSE) 

    lambda     W Shapiro.p.value 
397   -0.1 0.935         0.08248 
 
if (lambda >  0){TRANS = x ^ lambda}  
if (lambda == 0){TRANS = log(x)}  
if (lambda <  0){TRANS = -1 * x ^ lambda}  
 

library(rcompanion) 
 
plotNormalHistogram(T_tuk) 

 

 

 
Example of Tukey-transformed data in ANOVA 

  For an example of how transforming data can improve the distribu-
tion of the residuals of a parametric analysis, we will use the same 
turbidity values, but assign them to three different loca-
tions. Transforming the turbidity values to be more normally distri-
buted, both improves the distribution of the residuals of the analysis 
and makes a more powerful test, lowering the p-value. 
TABLE: 
Input =(" 
Location Turbidity 
 a        1.0 
 a        1.2 
 a        1.1 
 a        1.1 
 a        2.4 
 a        2.2 
 a        2.6 
 a        4.1 
 a        5.0 
 a       10.0 
 b        4.0 
 b        4.1 
 b        4.2 
 b        4.1 
 b        5.1 
 b        4.5 
 b        5.0 
 b       15.2 
 b       10.0 
 b       20.0 
 c        1.1 
 c        1.1 
 c        1.2 
 c        1.6 
 c        2.2 
 c        3.0 
 c        4.0 
 c       10.5 
") 
 
Data = read.table(textConnection(Input),header=TRUE) 
 
Attempt ANOVA on un-transformed data 
Here, even though the analysis of variance results in a significant p-

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017                                                                                           383 
ISSN 2229-5518  

IJSER © 2017 
http://www.ijser.org  

value (p = 0.03), the residuals deviate from the normal distribution 
enough to make the analysis invalid.   

 
boxplot(Turbidity ~ Location, 
        data = Data, 
        ylab="Turbidity", 
        xlab="Location") 
 
 
model = lm(Turbidity ~ Location,  
           data=Data) 
 
library(car) 
 
Anova(model, type="II") 

Anova Table (Type II tests) 
 
          Sum Sq Df F value  Pr(>F)                                             
Location  132.63  2  3.8651 0.03447 * 
Residuals 428.95 25                   
   

x = (residuals(model)) 
 
library(rcompanion) 
 
plotNormalHistogram(x) 

 

 
 

qqnorm(residuals(model), 
       ylab="Sample Quantiles for residuals") 
qqline(residuals(model),  
       col="red") 

 

 
 

 

plot(fitted(model), 
     residuals(model)) 

 
                                                                                                                                                           

 
                    3.TRANSFORM DATA 

 
        library(rcompanion) 
 
        Data$Turbidity_tuk =  
     transformTukey(Data$Turbidity, 
                     plotit=FALSE) 

 
    lambda     W Shapiro.p.value 
397   -0.1 0.935         0.08248 
 
if (lambda >  0){TRANS = x ^ lambda}  
if (lambda == 0){TRANS = log(x)}  
if (lambda <  0){TRANS = -1 * x ^ lambda} 

3.1. ANOVA with Tukey-transformed data 
After transformation, the residuals from the ANOVA are closer to a 
normal distribution—although not perfectly—, making the F-test 
more appropriate.  In addition, the test is more powerful as indicated 
by the lower p-value (p = 0.005) than with the untransformed data.  
The plot of the residuals vs. the fitted values shows that the residuals 
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are about as multiple as they were with the untransformed data. 
 
syntax: 
 
 
boxplot(Turbidity_tuk ~ Location, 
        data = Data, 
        ylab="Tukey-transformed Turbidity", 
        xlab="Location") 

 

 
 

model = lm(Turbidity_tuk ~ Location,  
           data=Data) 
 
library(car) 
 
Anova(model, type="II") 

 
Anova Table (Type II tests) 
 
            Sum Sq Df F value   Pr(>F)    
Location  0.052506  2  6.6018 0.004988 ** 
Residuals0.099416 25                     
 

 
 
 
 
x = residuals(model) 
 
library(rcompanion) 
 
plotNormalHistogram(x) 

 

 
 

qqnorm(residuals(model), 
       ylab="Sample Quantiles for residuals") 
qqline(residuals(model),  
       col="red") 

 

 
 

plot(fitted(model), 
     residuals(model)) 

 

 
 

3.2 BOX–COX TRANSFORMATION 
 The Box–Cox procedure is similar in concept to the Tukey Ladder 
of Power procedure described above.  However, instead of trans-
forming a single variable, it maximizes a log-chance statistic for a 
linear model (such as ANOVA or linear regression).  It will also 
work on a single variable using a formula of x ~ 1.The Box–Cox 
procedure is available with the boxcox function in 
the MASS package.  However, a few steps are needed to extract 
the lambda value and transform the data set. 
This example uses the same turbidity data. 

 
Turbidity = c(1.0, 1.2, 1.1, 1.1, 2.4, 2.2, 2.6, 4.1, 5.0, 10.0, 4.0, 
4.1, 4.2, 4.1, 5.1, 4.5, 5.0, 15.2, 10.0, 20.0, 1.1, 1.1, 1.2, 1.6, 
2.2, 3.0, 4.0, 10.5) 
 
 
library(rcompanion) 
 
plotNormalHistogram(Turbidity) 

 

 
 

qqnorm(Turbidity, 
       ylab="Sample Quantiles for Turbidity") 
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qqline(Turbidity,  
       col="red") 

 

 

 
         3.3 BOX–COX TRANSFORMATION FOR A SINGLE  
          VAR IABLE 

 
library(MASS) 
 
Box = boxcox(Turbidity ~ 1,              # Transform Turbidity as 
a single vector 
             lambda = seq(-6,6,0.1)      # Try values -6 to 6 by 0.1 
             ) 
 
Cox = data.frame(Box$x, Box$y)            # Create a data frame 
with the results 
 
Cox2 = Cox[with(Cox, order(-Cox$Box.y)),] # Order the new 
data frame by decreasing y 
 
Cox2[1,]                                  # Display the lambda with the 
greatest 
                                          #    log likelihood 

 
   Box.x     Box.y 
59  -0.2 -41.35829 
 

lambda = Cox2[1, "Box.x"]                 # Extract that lambda 
 
T_box = (Turbidity ^ lambda - 1)/lambda   # Transform the 
original data 
 
 
library(rcompanion) 
 
plotNormalHistogram(T_box) 

 

 

Example of Box–Cox transformation for ANOVA mod-
el 

 
Input =(" 
Location Turbidity 
 a        1.0 
 a        1.2 
 a        1.1 
 a        1.1 
 a        2.4 
 a        2.2 
 a        2.6 
 a        4.1 
 a        5.0 
 a       10.0 
 b        4.0 
 b        4.1 
 b        4.2 
 b        4.1 
 b        5.1 
 b        4.5 
 b        5.0 
 b       15.2 
 b       10.0 
 b       20.0 
 c        1.1 
 c        1.1 
 c        1.2 
 c        1.6 
 c        2.2 
 c        3.0 
 c        4.0 
 c       10.5 
") 
 
Data = read.table(textConnection(Input),header=TRUE) 

3.4 ATTEMPT ANOVA ON UN-TRANSFORMED DATA 
 
model = lm(Turbidity ~ Location,  
           data=Data) 
 
library(car) 
 
Anova(model, type="II") 

 
Anova Table (Type II tests) 
 
          Sum Sq Df F value  Pr(>F)   
Location  132.63  2  3.8651 0.03447 * 
Residuals 428.95 25                   
 

x = residuals(model) 
 
library(rcompanion) 
 
plotNormalHistogram(x) 
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qqnorm(residuals(model), 
       ylab="Sample Quantiles for residuals") 
qqline(residuals(model),  
       col="red") 

 

 
 

plot(fitted(model), 
     residuals(model)) 

 

 
 

 
 
 
 
 
         Transform data 

 
library(MASS) 
 
Box = boxcox(Turbidity ~ Location, 
             data = Data, 
             lambda = seq(-6,6,0.1) 
             ) 
 
Cox = data.frame(Box$x, Box$y) 
 

Cox2 = Cox[with(Cox, order(-Cox$Box.y)),] 
 
Cox2[1,] 
 
lambda = Cox2[1, "Box.x"] 
 
Data$Turbidity_box = (Data$Turbidity ^ lambda - 
1)/lambda    
 
boxplot(Turbidity_box ~ Location, 
        data = Data, 
        ylab="Box–Cox-transformed Turbidity", 
        xlab="Location") 

Diagram: 

 
 

Perform ANOVA and check residuals 
 
model = lm(Turbidity_box ~ Location,  
           data=Data) 
 
library(car) 
 
Anova(model, type="II") 

 
Anova Table (Type II tests) 
 
           Sum Sq Df F value Pr(>F)    
Location  0.16657  2  6.6929 0.0047 ** 
Residuals 0.31110 25                   
 

xresiduals(model) 
 
library(rcompanion) 
 
plotNormalHistogram(x) 
Diagram: 
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qqnorm(residuals(model), 
ylab="Sample Quantiles for residuals") 
qqline(residuals(model),  
col="red") 

Diagram: 

 
 

plot(fitted(model), 
     residuals(model)) 

Diagram: 

 

 
4. CONCLUSIONS 
Both the Tukey’s Ladder of Powers principle as implemented by 
the transformTukey function and the Box–Cox procedure were suc-
cessful at transforming a single variable to follow a more normal 
distribution.  They were also both successful at improving the distri-
bution of residuals from a simple ANOVA. 
  
 The Box–Cox procedure has the advantage of dealing with the de-
pendent variable of a linear model, while 
the transformTukey function works only for a single variable without 
considering other variables.  Because of this, the Box–Cox procedure 
may be advantageous when a relatively simple model is considered.  
In cases where there are complex models or multiple regression, it 
may be helpful to transform both dependent and independent va-
riables independently. 
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